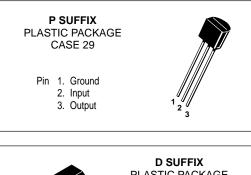

MC79L00, A Series

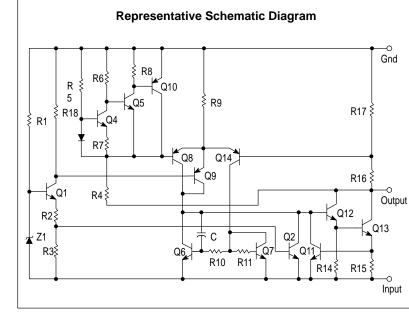
Three-Terminal Low Current Negative Voltage Regulators


The MC79L00, A Series negative voltage regulators are inexpensive, easy-to-use devices suitable for numerous applications requiring up to100 mA. Like the higher powered MC7900 Series negative regulators, this series features thermal shutdown and current limiting, making them remarkably rugged. In most applications, no external components are required for operation.

The MC79L00 devices are useful for on–card regulation or any other application where a regulated negative voltage at a modest current level is needed. These regulators offer substantial advantage over the common resistor/zener diode approach.

- No External Components Required
- Internal Short Circuit Current Limiting
- Internal Thermal Overload Protection
- Low Cost
- Complementary Positive Regulators Offered (MC78L00 Series)
- Available in Either ±5% (AC) or ±10% (C) Selections

SEMICONDUCTOR TECHNICAL DATA


* SOP–8 is an internally modified SO–8 package. Pins 2, 3, 6, and 7 are electrically common to the die attach flag. This internal lead frame modification decreases package thermal resistance and increases power dissipation capability when appropriately mounted on a printed circuit board. SOP–8 conforms to all external dimensions of the standard SO–8 package.

Device No. ±10%	Device No. 5%	Nominal Voltage
MC79L05C	MC79L05AC	-5.0
MC79L12C	MC79L12AC	-12
MC79L15C	MC79L15AC	-15
MC79L18C	MC79L18AC	-18
MC79L24C	MC79L24AC	-24

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC79LXXACD*		SOP-8
MC79LXXACP	T _J = 0° to +125°С	Plastic Power
MC79LXXCP		Plastic Power
MC79LXXABD*	T. 40% to 1425%C	SOP-8
MC79LXXABP*	$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	Plastic Power

XX indicates nominal voltage

* Automotive temperature range selections are available with special test conditions and additional tests in 5, 12 and 15 V devices. Contact your local Motorola sales office for information.

MC79L00, A Series

MAXIMUM RATINGS (T_A = +25°C, unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage (-5 V) (-12, -15, -18 V) (-24 V)	VI	-30 -35 -40	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Junction Temperature	Тj	+150	°C

ELECTRICAL CHARACTERISTICS (V_I = -10 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40°C < T_J +125°C (for MC79LXXAB), 0°C < T_J < +125°C (for MC79LXXAC)).

		MC	C79L05C,	AB	МС	79L05AC,	AB	
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	Vo	-4.6	-5.0	-5.4	-4.8	-5.0	-5.2	Vdc
Input Regulation (T _J = +25°C)	Reg _{line}							mV
–7.0 Vdc ≥ V _I ≥ –20 Vdc –8.0 Vdc ≥ V _I ≥ –20 Vdc				200 150			150 100	
Load Regulation $T_J = +25^{\circ}C$, 1.0 mA $\leq I_O \leq$ 100 mA 1.0 mA $\leq I_O \leq$ 40 mA	Reg _{load}			60 30			60 30	mV
Output Voltage $-7.0 \text{ Vdc} \ge V_I \ge -20 \text{ Vdc}, 1.0 \text{ mA} \le I_O \le 40 \text{ mA}$ $V_I = -10 \text{ Vdc}, 1.0 \text{ mA} \le I_O \le 70 \text{ mA}$	VO	-4.5 -4.5		-5.5 -5.5	-4.75 -4.75		-5.25 -5.25	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	IIB			6.0 5.5			6.0 5.5	mA
Input Bias Current Change $-8.0 \text{ Vdc} \ge V_I \ge -20 \text{ Vdc}$ $1.0 \text{ mA} \le I_O \le 40 \text{ mA}$	IIB			1.5 0.2			1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	Vn	-	40	-	-	40	-	μV
Ripple Rejection (-8.0 \ge V _I \ge -18 Vdc, f = 120 Hz, T _J = +25°C)	RR	40	49	-	41	49	-	dB
Dropout Voltage ($I_O = 40 \text{ mA}, T_J = +25^{\circ}C$)	VI-VO	-	1.7	-	-	1.7	-	Vdc

ELECTRICAL CHARACTERISTICS (V_I = -19 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40°C < T_J +125°C (for MC79LXXAC), 0°C < T_J < +125°C (for MC79LXXAB)).

		MC79L12C, AB			MC	79L12AC,	AB	
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	VO	-11.1	-12	-12.9	-11.5	-12	-12.5	Vdc
Input Regulation (T _J = +25°C)	Reg _{line}							mV
–14.5 Vdc ≥ V _I ≥ –27 Vdc –16 Vdc ≥ V _I ≥ –27 Vdc				250 200			250 200	
Load Regulation $T_J = +25^{\circ}C$, 1.0 mA $\le I_O \le 100$ mA 1.0 mA $\le I_O \le 40$ mA	Reg _{load}			100 50			100 50	mV
Output Voltage -14.5 Vdc \ge V _I \ge -27 Vdc, 1.0 mA \le I _O \le 40 mA V _I = -19 Vdc, 1.0 mA \le I _O \le 70 mA	Vo	-10.8 -10.8		-13.2 -13.2	-11.4 -11.4		-12.6 -12.6	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	ΙB			6.5 6.0			6.5 6.0	mA
Input Bias Current Change $-16 \text{ Vdc} \ge \text{V}_I \ge -27 \text{ Vdc}$ $1.0 \text{ mA} \le \text{I}_O \le 40 \text{ mA}$	IIB			1.5 0.2			1.5 0.2	mA
Output Noise Voltage (T _A = +25°C, 10 Hz \leq f \leq 100 kHz)	Vn	-	80	-	-	80	-	μV
Ripple Rejection (-15 \leq V _I \leq -25 Vdc, f = 120 Hz, T _J = +25°C)	RR	36	42	-	37	42	-	dB
Dropout Voltage ($I_O = 40 \text{ mA}, T_J = +25^{\circ}C$)	VI-VO	-	1.7	-	-	1.7	-	Vdc

MC79L00, A Series

ELECTRICAL CHARACTERISTICS (V_I = -23 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40°C < T_J +125°C (for MC79LXXAB), 0°C < T_J < +125°C (for MC79LXXAC)).

		1	MC79L150	2	MC	79L15AC,	AB	
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	VO	-13.8	-15	-16.2	-14.4	-15	-15.6	Vdc
Input Regulation (T _J = +25°C) -17.5 Vdc \ge V _I \ge -30 Vdc -20 Vdc \ge V _I \ge -30 Vdc	Reg _{line}		-	300 250		-	300 250	mV
Load Regulation $T_J = +25^{\circ}C$, 1.0 mA $\le I_O \le 100$ mA 1.0 mA $\le I_O \le 40$ mA	Reg _{load}			150 75			150 75	mV
Output Voltage $-17.5 \text{ Vdc} \ge V_I \ge -\text{Vdc}, 1.0 \text{ mA} \le I_O \le 40 \text{ mA}$ $V_I = -23 \text{ Vdc}, 1.0 \text{ mA} \le I_O \le 70 \text{ mA}$	Vo	-13.5 -13.5		-16.5 -16.5	-14.25 -14.25		-15.75 -15.75	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	l _{IB}			6.5 6.0			6.5 6.0	mA
Input Bias Current Change -20 Vdc \ge V _I \ge -30 Vdc 1.0 mA \le I _O \le 40 mA	ΔI _{IB}			1.5 0.2			1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	V _N	-	90	-	-	90	-	μV
Ripple Rejection (-18.5 \leq VI \leq -28.5 Vdc, f = 120 Hz)	RR	33	39	-	34	39	-	dB
Dropout Voltage IO = 40 mA, TJ = +25°C	VI-VO	-	1.7	-	-	1.7	-	Vdc

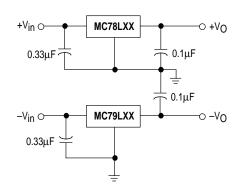
ELECTRICAL CHARACTERISTICS (V_I = -27 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, 0°C < T_J > +125°C, unless otherwise noted).

		T I	MC79L180	2	M	IC79L18A	С	Unit
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	
Output Voltage ($T_J = +25^{\circ}C$)	VO	-16.6	-18	-19.4	-17.3	-18	-18.7	Vdc
$\begin{array}{l} \mbox{Input Regulation} \\ (T_J = +25^{\circ}C) \\ -20.7 \ \mbox{Vdc} \geq V_I \geq -33 \ \mbox{Vdc} \\ -21.4 \ \mbox{Vdc} \geq V_I \geq -33 \ \mbox{Vdc} \\ -22 \ \mbox{Vdc} \geq V_I \geq -33 \ \mbox{Vdc} \\ -21 \ \ \mbox{Vdc} \geq V_I \geq -33 \ \ \mbox{Vdc} \\ -21 \ \ \ \mbox{Vdc} \geq V_I \geq -33 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Reg _{line}	- - - -	- - -	_ 325 275 _	- - -		325 _ _ 275	mV
Load Regulation $T_J = +25^{\circ}C$, 1.0 mA $\le I_O \le 100$ mA 1.0 mA $\le I_O \le 40$ mA	Reg _{load}			170 85			170 85	mV
$\begin{array}{l} \mbox{Output Voltage} \\ -20.7 \ \mbox{Vdc} \geq V_I \geq -33 \ \mbox{Vdc}, \ 1.0 \ \mbox{mA} \leq I_O \leq 40 \ \mbox{mA} \\ -21.4 \ \ \mbox{Vdc} \geq V_I \geq -33 \ \ \mbox{Vdc}, \ 1.0 \ \ \mbox{mA} \leq I_O \leq 40 \ \ \mbox{mA} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	VO		- - -	_ _19.8 _19.8	-17.1 - -17.1	_ _ _	-18.9 - -18.9	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	lıΒ			6.5 6.0			6.5 6.0	mA
$\begin{array}{l} \mbox{Input Bias Current Change} \\ -21 \mbox{ Vdc} \geq V_l \geq -33 \mbox{ Vdc} \\ -27 \mbox{ Vdc} \geq V_l \geq -33 \mbox{ Vdc} \\ 1.0 \mbox{ mA} \leq I_O \leq 40 \mbox{ mA} \end{array}$	lıΒ			_ 1.5 0.2			1.5 - 0.1	mA
Output Noise Voltage (T _A = +25°C, 10 Hz \leq f \leq 100 kHz)	V _n	-	150	-	-	150	-	μV
Ripple Rejection (-23 \leq V _I \leq -33 Vdc, f = 120 Hz, T _J = +25°C)	RR	32	46	-	33	48	-	dB
Dropout Voltage $I_O = 40 \text{ mA}, \text{ T}_J = +25^{\circ}\text{C}$	IVI-VOI	_	1.7	-	-	1.7	-	Vdc

MC79L00, A Series

		1	MC79L240	C	M	IC79L24A	C	
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	VO	-22.1	-24	-25.9	-23	-24	-25	Vdc
Input Regulation $(T_J = +25^{\circ}C)$	Regline							mV
–27 Vdc ≥ V _I ≥ –38 Vdc –27.5 Vdc ≥ V _I ≥ –38 Vdc			-	_ 350	-	-	350	
$-28 \text{ Vdc} \ge \text{V}_{I} \ge -38 \text{ Vdc}$		-	-	300	-	-	300	
Load Regulation $T_J = +25^{\circ}C$, 1.0 mA $\le I_O \le$ 100 mA 1.0 mA $\le I_O \le$ 40 mA	Reg _{load}			200 100			200 100	mV
$\begin{array}{l} Output \mbox{ Voltage} \\ -27 \mbox{ Vdc} \geq V_I \geq -38 \mbox{ V}, \mbox{ 1.0 mA} \leq I_O \leq 40 \mbox{ mA} \\ -28 \mbox{ Vdc} \geq V_I \geq -38 \mbox{ Vdc}, \mbox{ 1.0 mA} \leq I_O \leq 40 \mbox{ mA} \\ V_I = -33 \mbox{ Vdc}, \mbox{ 1.0 mA} \leq I_O \leq 70 \mbox{ mA} \end{array}$	Vo	_ _21.4 _21.4		_ -26.4 -26.4	-22.8 - -22.8	_ _ _	-25.2 - -25.2	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	IIB			6.5 6.0			6.5 6.0	mA
Input Bias Current Change -28 Vdc \ge V _I \ge -38 Vdc 1.0 mA \le I _O \le 40 mA	ΔIIB			1.5 0.2			1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	Vn	-	200	-	_	200	-	μV
Ripple Rejection (-29 \leq V _I \leq -35 Vdc, f = 120 Hz, T _J = +25°C)	RR	30	43	-	31	47	-	dB
Dropout Voltage $I_O = 40 \text{ mA}, T_J = +25^{\circ}C$	IVI-VOI	-	1.7	-	-	1.7	-	Vdc

ELECTRICAL CHARACTERISTICS (VI = -33 V, IO = 40 mA, CI = 0.33 µF, CO = 0.1 µF, 0°C < TJ < +125°C, unless otherwise noted)


APPLICATIONS INFORMATION

Design Considerations

The MC79L00, A Series of fixed voltage regulators are designed with Thermal Overload Protections that shuts down the circuit when subjected to an excessive power overload condition, Internal Short Circuit Protection that limits the maximum current the circuit will pass.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire length, or if the output load capacitance is large. An input

Figure 1. Positive and Negative Regulator

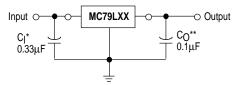
Figure 2. Standard Application

bypass capacitor should be selected to provide good

high-frequency characteristics to insure stable operation

under all load conditions. A 0.33 μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high

frequencies should be chosen. The bypass capacitor should

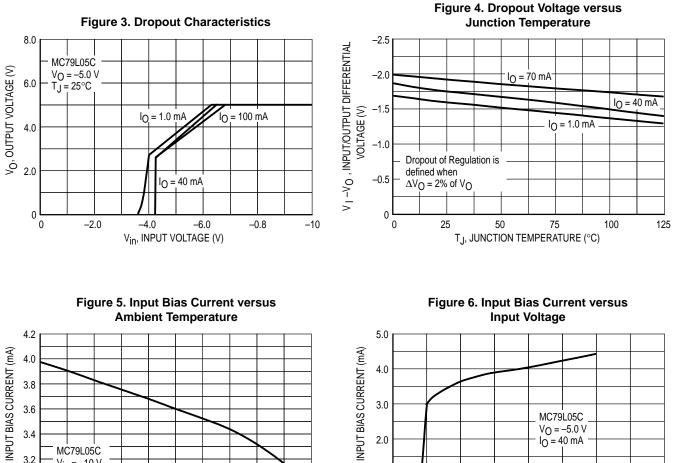

be mounted with the shortest possible leads directly across

the regulator's input terminals. Normally good construction

techniques should be used to minimize ground loops and

lead resistance drops since the regulator has no external

sense lead. Bypassing the output is also recommended.


A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the ripple voltage.

* CI is required if regulator is located an appreciable distance from the power supply filter

** CO improves stability and transient response.

MC79L00, A Series **TYPICAL CHARACTERISTICS**

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

2.0

1.0

0

0

-5.0

-10

à

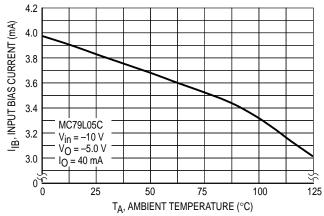


Figure 7. Maximum Average Power Dissipation versus Ambient Temperature (TO-92)

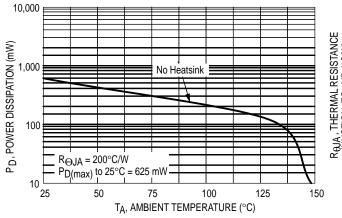
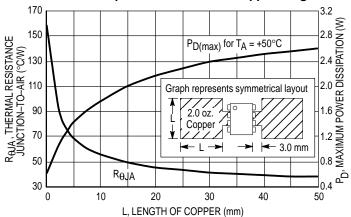


Figure 8. SOP-8 Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

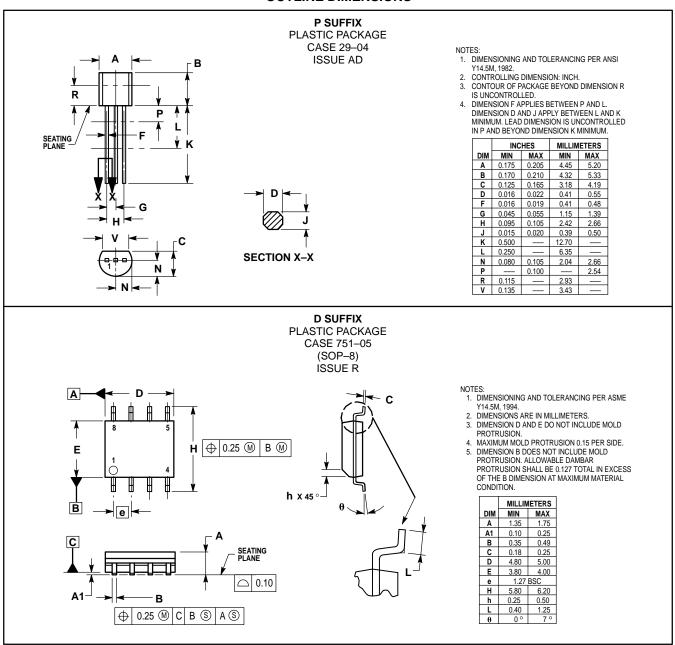
-15

-20


Vin, INPUT VOLTAGE (V)

-25

-30


-35

-40

MOTOROLA ANALOG IC DEVICE DATA

MC79L00, A Series OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and the part. Motorola not were of manufacture of the part. Motorola and Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

 \Diamond

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://Design_NET.com JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.