FAIRCHILD

SEMICONDUCTOR

74F574 Octal D-Type Flip-Flop with 3-STATE Outputs

General Description

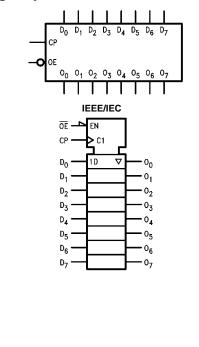
The 74F574 is a high-speed, low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable ($\overline{\text{OE}}$). The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition.

This device is functionally identical to the 74F374 except for the pinouts.

Features

Inputs and outputs on opposite sides of package allowing easy interface with microprocessors

April 1988


Revised October 2000

- Useful as input or output port for microprocessors
- Functionally identical to 74F374
- 3-STATE outputs for bus-oriented applications

Ordering Code:

Order Number	Package Number	Package Description
74F574SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F574SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F574PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Devices also available	in Tape and Reel. Specify	/ by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

		$\overline{\mathbf{x}}$		
ŌĒ —	1	\cup	20	-v _{cc}
D ₀ —	2		19	- 0 ₀
D ₁ -	3		18	-0 ₁
D ₂ -	4		17	-0 ₂
D3 -	5		16	-0 ₃
D4 —	6		15	_0 4
D ₅ —	7		14	-0 ₅
D ₆ -	8		13	-0 ₆
D ₇ —	9		12	- 0 ₇
GND —	10		11	- CP
				I

© 2000 Fairchild Semiconductor Corporation DS009567

74F574

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}
D ₀ -D ₇	Data Inputs	1.0/1.0	20 μA/–0.6 mA
D ₀ –D ₇ CP	Clock Pulse Input (Active LOW)	1.0/1.0	20 µA/–0.6 mA
OE	3-STATE Output Enable Input (Active LOW)	1.0/1.0	20 µA/–0.6 mA
O ₀ –O ₇	3-STATE Outputs	150/40 (33.3)	–3 mA/24 mA (20 mA)

Functional Description

The 74F574 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\text{OE}}$ input does not affect the state of the flipflops.

Function Table

I	nputs		Internal	Outputs	Function
OE	СР	D	Q	0	Function
Н	Н	L	NC	Z	Hold
н	н	н	NC	Z	Hold
н	~	L	L	Z	Load
н	~	н	н	Z	Load
L	~	L	L	L	Data Available
L	~	н	н	н	Data Available
L	Н	L	NC	NC	No Change in Data
L	H	Н	NC	NC	No Change in Data

H = HIGH Voltage Level L = LOW Voltage Level

 $\begin{aligned} & Z = \text{LOW Voltage Level} \\ & X = \text{Immaterial} \\ & Z = \text{High Impedance} \\ & \checkmark = \text{LOW-to-HIGH Transition} \\ & \text{NC} = \text{No Change} \end{aligned}$

Absolute Maximum Ratings(Note 1)

Storage Temperature Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2) Input Current (Note 2) Voltage Applied to Output in HIGH State (with V_{CC} = 0V) Standard Output 3-STATE Output Current Applied to Output -65°C to +150°C -55°C to +125°C -55°C to +150°C -0.5V to +7.0V -0.5V to +7.0V -30 mA to +5.0 mA

–0.5V to V_{CC}

-0.5V to +5.5V

Recommended Operating Conditions

Free Air Ambient Temperature Supply Voltage

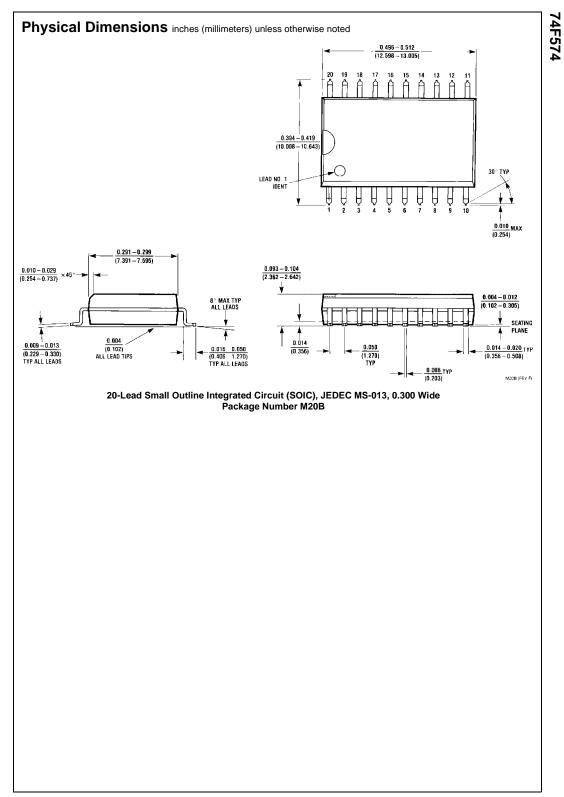
74F574

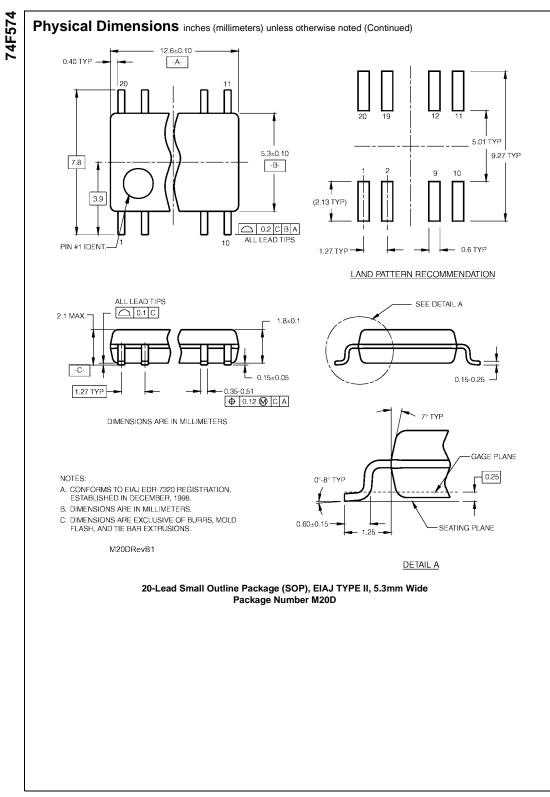
0°C to +70°C +4.5V to +5.5V

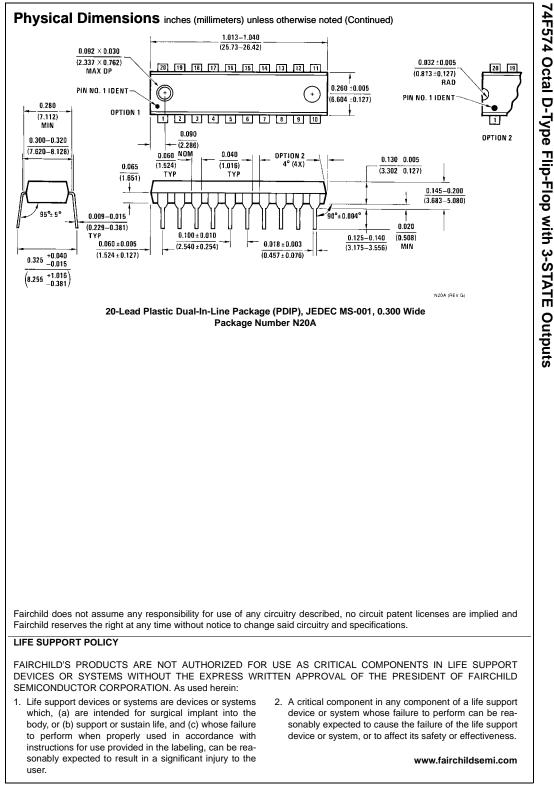
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

in LOW State (Max)	twice the rated I_{OL} (mA)


DC Electrical Characteristics


Symbol	Parameter		Min	Тур	Max	Units	V _{cc}	Conditions			
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal			
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal			
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA			
V _{OH}	Output HIGH	10% V _{CC}	2.5					I _{OH} = -1 mA			
	Voltage	10% V _{CC}	2.4				Min	$I_{OH} = -3 \text{ mA}$			
		5% V _{CC}	2.7			V		$I_{OH} = -1 \text{ mA}$			
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA}$			
V _{OL}	Output LOW	10% V _{CC}			0.5	V	N.C	1 04			
	Voltage				0.5	v	Min	I _{OL} = 24 mA			
I _{IH}	Input HIGH				5.0	μA	Max	V _{IN} = 2.7V			
	Current				5.0	μΑ	IVIAX	$v_{\rm IN} = 2.7 v$			
I _{BVI}	Input HIGH Current				7.0	μA	Max	V _{IN} = 7.0V			
	Breakdown Test				7.0	μΑ	IVIAX	$v_{\rm IN} = 7.0v$			
ICEX	Output HIGH				50	μA			Мох	Max	
	Leakage Current				50	μΑ	IVIAX	$V_{OUT} = V_{CC}$			
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA			
	Test		4.75			v	0.0	All Other Pins Grounded			
I _{OD}	Output Leakage				3.75	۸	0.0	V _{IOD} = 150 mV			
	Circuit Current				3.75	μA	0.0	All Other Pins Grounded			
Ι _{ΙL}	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$			
I _{OZH}	Output Leakage Current				50	μA	Max	V _{OUT} = 2.7V			
I _{OZL}	Output Leakage Current				-50	μA	Max	$V_{OUT} = 0.5V$			
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$			
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	V _{OUT} = 5.25V			
I _{CCZ}	Power Supply Current			55	86	mA	Max	$V_{\Omega} = HIGH Z$			


Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$			$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$		T _A = 0°C to +70°C V _{CC} = +5.0V		Units
Gymbol	i alameter		$C_L = 50 \text{ pF}$			$C_L = 50 \ pF$		$C_L = 50 \ pF$	
		Min	Тур	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	100			60		70		MH
t _{PLH}	Propagation Delay	2.5	5.3	8.5	2.5	9.5	2.5	8.5	
t _{PHL}	CP to O _n	2.5	5.3	8.5	2.5	9.5	2.5	8.5	ns
t _{PZH}	Output Enable Time	3.0	5.5	9.0	2.5	10.5	2.5	10.0	
t _{PZL}		3.0	6.0	9.0	2.5	10.5	2.5	10.0	-
t _{PHZ}	Output Disable Time	1.5	3.3	5.5	1.5	7.0	1.5	6.5	ns
t _{PLZ}		1.5	2.8	5.5	1.5	7.0	1.5	6.5	1

AC Operating Requirements

		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$		$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$		$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$		Units
Symbol	Parameter							
		Min	Max	Min	Max	Min	Max	
t _S (H)	Set-up Time, HIGH or LOW	2.5		3.0		2.5		
t _S (L)	D _n to CP	2.0		2.5		2.0		-
t _H (H)	Hold Time, HIGH or LOW	2.0		2.0		2.0		ns
t _H (L)	D _n to CP	2.0		2.0		2.0		
t _W (H)	CP Pulse Width	5.0		5.0		5.0		20
t _W (L)	HIGH or LOW	5.0		5.0		5.0		ns

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:

74F574SJX 74F574SCX 74F574SJ 74F574PC 74F574SC 74F574PC_Q 74F574SJ_Q