313645 # Am25LS2521 Eight-Bit Equal-to Comparator #### DISTINCTIVE CHARACTERISTICS - · 8-bit byte oriented equal comparator - Cascadable using EIN - High-speed, Low-Power Schottky technology - tod A · B to EOUT in 9ns - Standard 20-pin package #### **GENERAL DESCRIPTION** The Am25LS2521 is an 8-bit "equal to" comparator capable of comparing two 8-bit words for "equal to" with provision for expansion or external enabling. The matching of the two 8-bit inputs plus a logic LOW on the \overline{E}_{IN} produces an active LOW on the output \overline{E}_{OUT} . The logic expression for the device can be expressed as: $E_{OUT} = (A_0 \odot B_0) (A_1 \odot B_1) (A_2 \odot B_2) (A_3 \odot B_3) (A_4 \odot B_4)$ $(A_5\odot B_5)$ Y($A_5\odot B_6$) ($A_7\odot B_7$) E_{1N} . It is obvious that the expression is valid where A_0-A_7 and B_0-B_7 are expressed as either assertions or negations. This is also true for pair of terms i.e. A_0 can be compared with B_0 at the same time \overline{A}_1 is compared with \overline{B}_1 . It is only essential that the polarity of the paired terms be maintained. #### **BLOCK DIAGRAM** #### RELATED PRODUCTS | Part No. | Description | | | | |----------|---------------------|--|--|--| | Am29806 | Chip Select Decoder | | | | | Am29809 | 9-Bit Comparator | | | | # CONNECTION DIAGRAM Top View Note: Pin 1 is marked for orientation #### LOGIC SYMBOL ## METALLIZATION AND PAD LAYOUT ### ORDERING INFORMATION AMD products are available in several packages and operating ranges. The order number is formed by a combination of the following: Device number, speed option (if applicable), package type, operating range and screening option (if desired). | Valid Combinations | | | | | |--------------------|--|--|--|--| | Am25LS2521 | PC
DC, DM
FM
LC, LM
XC, XM | | | | #### Valid Combinations Consult the AMD sales office in your area to determine if a device is currently available in the combination you wish. Pin No. 19 Name A₀-A₇ B₀-B₇ Ein EOUT # PIN DESCRIPTION A input to comparator. B input to comparator. #### **APPLICATION** 1/0 ı Description Enable active LOW. EQUAL output active LOW. ## MAX, ENABLE (HIGH-to-LOW) DELAY OVER 16-BITS (Commercial Range) | tpHL | A _i or B _i
to E _{OUT} | 19ns | |------------------|---|------| | t _{PHL} | E _{IN} to 12.5ns | | | Te | 31.5ns | | Note: This part does not have internal pull up resistors. In this application external pull ups should be added to the 16 ports. > MICROPROCESSOR ENABLE CONTROLLED, SELECTABLE, ADDRESS DECODER ### ABSOLUTE MAXIMUM RATINGS | Storage Temperature | 65°C to +150°C | |------------------------------------|------------------------| | (Ambient) Temperature Under Bias | 55°C to +125°C | | Supply Voltage to Ground Potential | | | Continuous | 0.5V to +7.0V | | DC Voltage Applied to Outputs For | | | High Output State | -0.5V to $+V_{CC}$ max | | DC Input Voltage | 0.5V to +7.0V | | DC Output Current, Into Outputs | 30mA | | DC Input Current | 30mA to +5.0mA | | | | Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. #### **OPERATING RANGES** | Commercial (C) Devices Temperature | 0°C to +70°C
+4.75V to +5.25V | |--|----------------------------------| | Military (M) Devices Temperature Supply Voltage Operating ranges define those limit ality of the device is guaranteed. | +4.5V to +5.5V | # DC CHARACTERISTICS over operating range unless otherwise specified | Parameters | Description | Test Conditions (Note 2) | | | Min | Typ
(Note 1) | Max | Units | |---------------------------------|---------------------------------------|---|------------------------|---------------------------------|-----|-----------------|-------|-------| | | | | | MIL | 2.5 | | | | | V _{OH} | Output HIGH Voltage | V _{CC} = MIN
V _{IN} = V _{IH} or V _{IL} | ₁ = -440μA | COM'L | 2.7 | | | Volts | | | | | I _{OL} = 4.0 | | | | 0.4 | , | | | Output I OW Voltage | V _{CC} = MIN | I _{OL} = 8.0m | ıA. | | | 0.45 | Volts | | VOL | Output LOW Voltage | VIN = VIH or VIL | I _{OL} = 12m | | | | 0.5 | | | ViH | Input HIGH Level | Guaranteed input logical HIGH voltage for all inputs | | | 2.0 | | | Volts | | | | | | MIL | | | 0.7 | | | V _{IL} Input LOW Level | Input LOW Level | | | COM'L | | | 0.8 | Volts | | VI | Input Clamp Voltage | V _{CC} = MIN, I _{IN} = -18mA | | | | -1.5 | Volts | | | | input oiting | V _{CC} = MAX, V _{IN} = 0.4V | | A _i , B _i | | | -0.36 | mA | | 1 _{IL} | Input LOW Current | | | Ē | | | -0.72 | | | | | A _i , B _i | | A _i , B _i | | | 20 | | | l _{iH} | Input HIGH Current | $V_{CC} = MAX, V_{IN} = 2.$ | 7 V | Ē | | | 40 | μΑ | | | | $V_{CC} = MAX, V_{IN} = 7.0V$ $\begin{array}{c} A_i, \\ \hline E \end{array}$ | | A _i , B _i | | | 0.1 | mA | | i _l | input HIGH Current | | | Ē | | | 0.2 | | | Isc | Output Short Circuit Current (Note 3) | V _{CC} = MAX | | | -15 | | -85 | mA | | lcc | Power Supply Current
(Note 4) | V _{CC} = MAX | | | | 27 | 40 | mA | Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading. For conditions shown as MIN or MAX, use the appropriate value specified under Operating Ranges for the applicable device type. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second. E = GND, all other inputs and outputs open. ### SWITCHING CHARACTERISTICS (T_A = +25°C, V_{CC} = 5.0V) | Parameters | Description | Test Conditions | Min | Тур | Max | Units | |------------------|---|-----------------------|-----|-----|-----|-------| | tplH | | | | 9 | 15 | | | tpHL | A _i or B _i to Equal | C _L = 15pF | | 9 | 15 | ns | | t _{PLH} | E to Equal | $R_L = 2.0k\Omega$ | | 5 | 7 | | | tpui | | | | 6 | 8 | ns | ## SWITCHING CHARACTERISTICS over operating range unless otherwise specified* | Parameters Description | | | COMMERCIAL | | MILITARY | | | |------------------------|-------------------------------------|------------------------|------------|------------|----------|-----|-------| | | | Am25LS2521 | | Am25LS2521 | | | | | | Description | n Test Conditions | Min | Max | Min | Max | Units | | PLH | A _i or B _i to | | | 20 | - | 22 | | | PHL | Equal Output | C _L = 50pF | | 19 | | 21 | ns | | PLH | E to Equal Output | R _L = 2.0kΩ | | 10.5 | | 12 | | | PHL | | i F | | 12.5 | | 15 | ns | ^{*}AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9. #### Am25LS2521 LOW-POWER SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS Note: Actual current flow direction shown.