
SK 9 GD 065

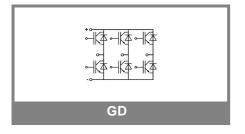
SEMITOP® 2

IGBT Module

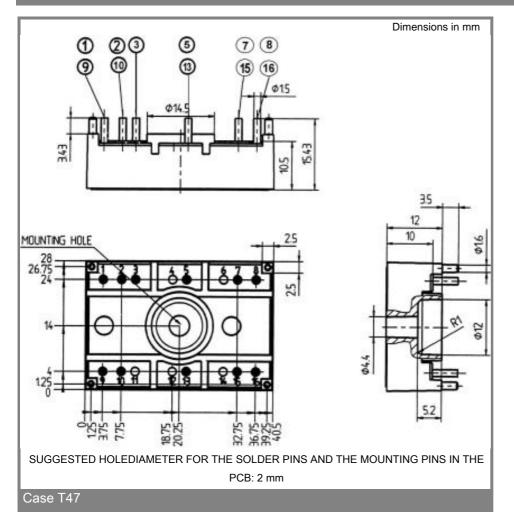
SK 9 GD 065

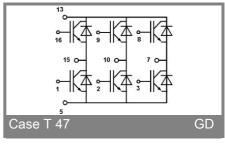
Target Data

Features


- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Ultrafast NPT technology IGBT
- CAL technology FWD

Typical Applications


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Absolute	Maximum Ratings	T_s = 25 °C, unless otherwise specified			
Symbol	Conditions	Values			
IGBT					
V_{CES}		600	V		
V _{GES}		± 20	V		
I _C	T _s = 25 (80) °C;	11 (8)	Α		
I _{CM}	$t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}\text{C};$	22 (16)	Α		
T_j		- 40 + 150	°C		
Inverse/F	T $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
I _F	T _s = 25 (80) °C;	22 (15)	Α		
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}\text{C};$	44 (30)	Α		
T_j		- 40 + 150	°C		
T _{stg}		- 40 + 125	°C		
T _{sol}	Terminals, 10 s	260	°C		
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V		

Characteristics		T _s = 25 °C	T _s = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT					•	
$V_{\text{CE(sat)}} \\ V_{\text{GE(th)}} \\ C_{\text{ies}} \\ R_{\text{th(j-s)}}$	$\begin{split} &I_{C} = 6 \text{ A, T}_{j} = 25 \text{ (125) } ^{\circ}\text{C} \\ &V_{CE} = V_{GE}; I_{C} = 0,0005 \text{ A} \\ &V_{CE} = 25 \text{ V; V}_{GE} = 0 \text{ V; 1 MHz} \\ &\text{per IGBT} \\ &\text{per module} \end{split}$	3	2 (2,2) 4 0,32	2,5 (2,7) 5 2,6	V V nF K/W K/W	
$t_{d(on)}$ t_r $t_{d(off)}$ t_f $E_{on} + E_{off}$	under following conditions: $V_{CC} = 300 \text{ V}, V_{GE} = \pm 15 \text{ V}$ $I_{C} = 6 \text{ A}, T_{j} = 125 \text{ °C}$ $R_{Gon} = R_{Goff} = 120 \Omega$ Inductive load		20 25 145 25 0,34		ns ns ns ns	
	reewheeling CAL Diode		,			
$V_F = V_{EC}$ $V_{(TO)}$ r_T $R_{th(j-s)}$	I _F = 15 A; T _j = 25 (125) °C T _j = 25 (125) °C T _j = 25 (125) °C		1,4 (1,4) 1 (0,9) 30 (33)	, ,	V V mΩ K/W	
I _{RRM} Q _{rr} E _{off}	under following conditions: $I_F = 15 \text{ A}; V_R = 300 \text{ V}$ $dI_F/dt = 1100 \text{ A/}\mu\text{s}$ $V_{GE} = 0 \text{ V}; T_j = 125 ^{\circ}\text{C}$		22 1,5 0,31		Α μC mJ	
Mechanic		Ī			1	
M1 w	mounting torque		21	2	Nm g	
Case	SEMITOP® 2		T 47			

SK 9 GD 065

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.