
SK 100 WT

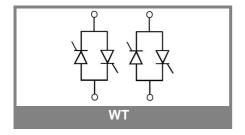
SEMITOP® 3

Thyristor

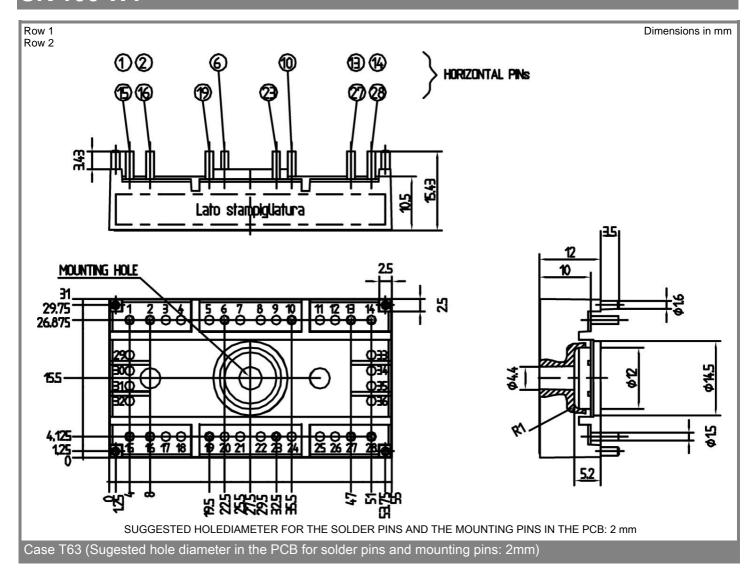
SK 100 WT

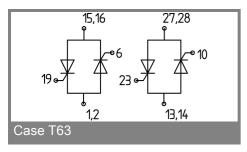
Target Data

Features


- Compact Design
- · One screw mounting
- Heat transfer and isolation trough direct copper bonded aluminium oxide ceramic (DCB)
- · Glass passived thyristor chips
- Up to 1600V reverse voltage
- UL recognized, file no. E 63 532

Typical Applications


- Soft starters
- Light control (studios, theaters...)
- Temperature control


V _{RSM} V	V _{RRM} , V _{DRM} V	I _{RMS} = 101 A (T _s = 85 °C)
900	800	SK 100 WT 08
1300	1200	SK 100 WT 12
1700	1600	SK 100 WT 16

Characteristics Ts = 25°C Unless otherwise specified				
Symbol	Conditions	Values	Units	
I _D			Α	
I_{TAV}/I_{FAV}			Α	
I _{RMS}	W1C; sin 180°; per phase at Ts = 85 (100)°C	101 (71)	А	
I _{TSM} /I _{FSM}	T _{vj} = 25 (125) °C; 10 ms	1500 (1350)	Α	
l²t	T _{vj} = 25 (125) °C; 8,3 10 ms	11250 (9100)	A²s	
T _{stg}		-40 +125	°C	
T _{solder}	terminals, 10 s	260	°C	
Thyristo	•		•	
(dv/dt) _{cr}	T _{vi} = 125 °C	1000	V/µs	
(di/dt) _{cr}	T_{vi}^{3} = 125 °C; f = f = 5060 Hz	100	A/µs	
t _q	$T_{vj} = 125 ^{\circ}\text{C}; \text{ typ.}$	80	μs	
I _H	T_{vj} = 25 °C; typ. / max.	100 / 200	mA	
IL	$T_{vj} = 25 ^{\circ}\text{C}; R_{G} = 33 \Omega; \text{typ. / max.}$	200 / 500	mA	
V _T	$T_{vi} = 25 ^{\circ}\text{C}; (I_T = 200 \text{A}); \text{max}.$	1,8	V	
$V_{T(TO)}$	T _{vi} = 125 °C	max. 0,9	V	
r _T `´	T _{vj} = 125 °C	max. 4,5	mΩ	
$I_{DD}; I_{RD}$	$T_{vj}^{'3}$ = 125 °C; $V_{DD} = V_{DRM}$; $V_{RD} = V_{RRM}$	max. 20	mA	
$R_{th(j-s)}$	per thyristor	0,6	K/W	
T_{vi}		- 40 + 125	°C	
V_{GT}	T_{vj} = 25 °C; d.c.	2	V	
I _{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	100	mA	
V_{GD}	T_{vj}^{s} = 125 °C; d.c.	0,25	V	
I_{GD}	T_{vj} = 125 °C; d.c.	5	mA	
Diode				
V_{F}	$T_{vj} = {^{\circ}C}; (I_F = A); max.$		V	
$V_{(TO)}$	$T_{vj} = {^{\circ}C}$		V	
r _T	$T_{vj} = {^{\circ}C}$		mΩ	
I_{RD}	$T_{vj} = {^{\circ}C}; V_{RD} = V_{RRM}$		mA	
R _{th(j-s)}			K/W	
T_{vj}			°C	
Mechanic	cal data			
V_{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min	3000 (2500)	V	
M_1	mounting torque	2,5	Nm	
w		30	g	
Case	SEMITOP® 3	T 63		

SK 100 WT

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.