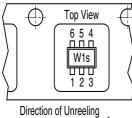


З

VPS05604

4

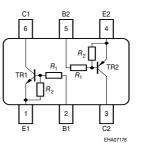

5

6

NPN/PNP Silicon Digital Transistor Array

- Switching circuit, inverter, interface circuit, driver circuit
- Two (galvanic) internal isolated NPN/PNP Transistors in one package
- Built in bias resistor ($R_1=22k\Omega$, $R_2=22k\Omega$)

Tape loading orientation



corresponds to pin 1 of device

(for example W1s)

Position in tape: pin 1 opposite of feed hole side EHA07193

Marking on SOT-363 package

Туре	Marking	Pin Configuration				Package		
BCR22PN	WPs	1=E1	2=B1	3=C2	4=E2	5=B2	6=C1	SOT363

Maximum Ratings

Parameter	Symbol	Value	Unit	
Collector-emitter voltage	V _{CEO}	50	V	
Collector-base voltage	V _{CBO}	50		
Emitter-base voltage	V _{EBO}	10		
Input on Voltage	V _{i(on)}	30		
DC collector current	I _C	100	mA	
Total power dissipation, $T_{\rm S}$ = 115 °C	P _{tot}	250	mW	
Junction temperature	Tj	150	°C	
Storage temperature	T _{stg}	-65 150		

Thermal Resistance

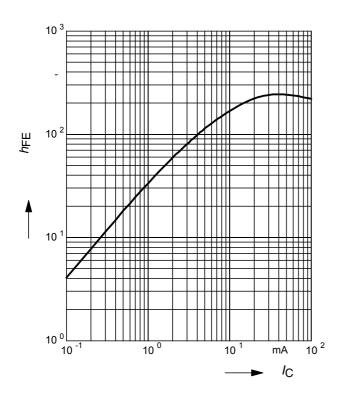
Junction - soldering point ¹⁾	R _{thJS}	≤ 140	K/W
--	-------------------	--------------	-----

¹For calculation of R_{thJA} please refer to Application Note Thermal Resistance

Parameter	Symbol	Values			Unit	
		min.	typ.	max.	1	
DC Characteristics			•		•	
Collector-emitter breakdown voltage	V _{(BR)CEO}	50	-	-	V	
$I_{\rm C} = 100 \ \mu {\rm A}, \ I_{\rm B} = 0$						
Collector-base breakdown voltage	V _{(BR)CBO}	50	-	-		
$I_{\rm C} = 10 \ \mu {\rm A}, \ I_{\rm E} = 0$						
Collector cutoff current	I _{CBO}	-	-	100	nA	
$V_{\rm CB} = 40 \text{V}, I_{\rm E} = 0$						
Emitter cutoff current	I _{EBO}	-	-	350	μA	
$V_{\rm EB} = 10 \rm V, \ I_{\rm C} = 0$						
DC current gain 1)	h _{FE}	50	-	-	-	
<i>I</i> _C = 5 mA, <i>V</i> _{CE} = 5 V						
Collector-emitter saturation voltage1)	V _{CEsat}	-	-	0.3	V	
<i>I</i> _C = 10 mA, <i>I</i> _B = 0.5 mA						
Input off voltage	V _{i(off)}	0.8	-	1.5		
<i>I</i> _C = 100 μA, <i>V</i> _{CE} = 5 V						
Input on Voltage	V _{i(on)}	1	-	2.5		
$I_{\rm C}$ = 2 mA, $V_{\rm CE}$ = 0.3 V						
Input resistor	R ₁	15	22	29	kΩ	
Resistor ratio	R_{1}/R_{2}	0.9	1	1.1	-	
AC Characteristics						
Transition frequency	f ₊	_	130	_	MH ₂	

Electrical Characteristics at T_A =25°C, unless otherwise specified

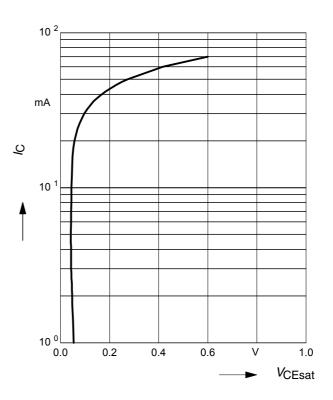
Transition frequency	f _T	-	130	-	MHz
<i>I</i> _C = 10 mA, <i>V</i> _{CE} = 5 V, <i>f</i> = 100 MHz					
Collector-base capacitance	C _{cb}	-	3	-	pF
V _{CB} = 10 V, <i>f</i> = 1 MHz					



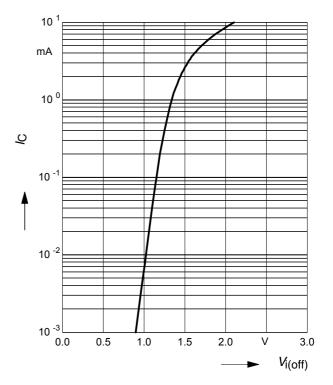
NPN Type

DC Current Gain $h_{\text{FE}} = f(l_{\text{C}})$

 $V_{CE} = 5V$ (common emitter configuration)



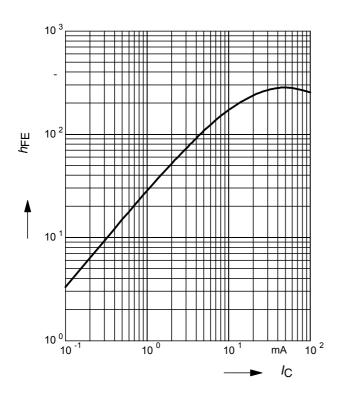
Input on Voltage $V_{i(on)} = f(I_C)$ $V_{CE} = 0.3V$ (common emitter configuration)

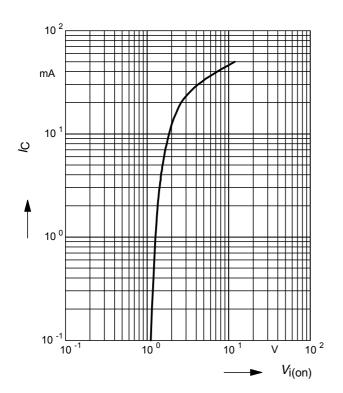


Collector-Emitter Saturation Voltage

 $V_{\text{CEsat}} = f(I_{\text{C}}), h_{\text{FE}} = 20$

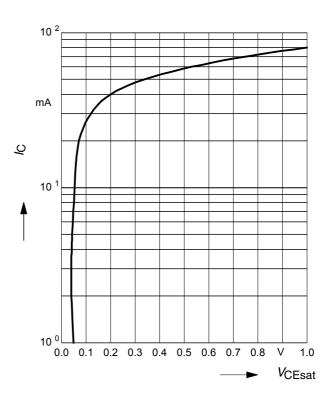
Input off voltage $V_{i(off)} = f(I_C)$ $V_{CE} = 5V$ (common emitter configuration)



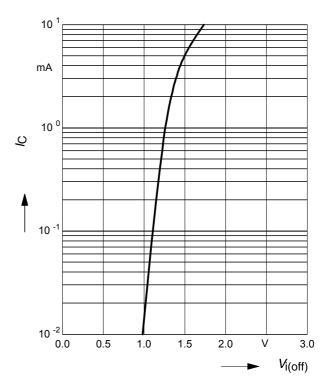

PNP Type

DC Current Gain $h_{\text{FE}} = f(I_{\text{C}})$

 $V_{CE} = 5V$ (common emitter configuration)

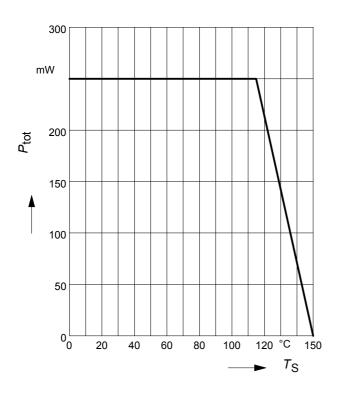


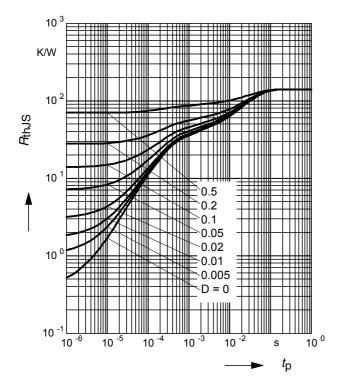
Input on Voltage $V_{i(on)} = f(I_C)$ $V_{CE} = 0.3V$ (common emitter configuration)

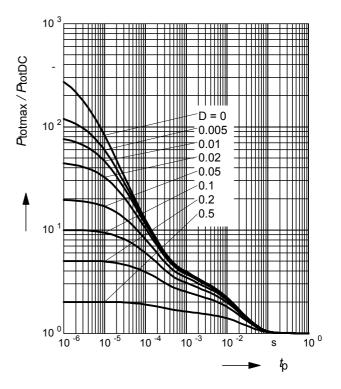


Collector-Emitter Saturation Voltage

 $V_{\text{CEsat}} = f(I_{\text{C}}), h_{\text{FE}} = 20$


Input off voltage $V_{i(off)} = f(I_C)$ $V_{CE} = 5V$ (common emitter configuration)


Total power dissipation $P_{\text{tot}} = f(T_{\text{S}})$



Permissible Pulse Load $R_{thJS} = f(t_p)$

Permissible Pulse Load

 $P_{\text{totmax}} / P_{\text{totDC}} = f(t_{\text{p}})$

Dec-13-2001

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München

© Infineon Technologies AG 2004. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.Infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.