National Semiconductor

General Description

The DS8881 vacuum fluorescent display driver will drive 16-digit grids of a vacuum fluorescent display. The decode inputs select one of the sixteen outputs to be pulled high. The device contains an oscillator for supplying clock signals to the MOS circuit, the filament bias zener and $50 \mathrm{k} \Omega$ pulldown resistors for each grid. Outputs will source up to 7 mA . The DS8881 is designed for 9 V operation. If the enable input is pulled low, all outputs are disabled.

Connection Diagram

TL/F/5846-1
Top View
Order Number DS8881N See NS Package Number N28B
Truth Table all outputs now shown high are off (low)

Inputs					Digit Outputs															
E_{N}	D	C	B	A	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
H	L	L	L	L	H															
H	L	L	L	H		H														
H	L	L	H	L			H													
H	L	L	H	H				H												
H	L	H	L	L					H											
H	L	H	L	H						H										
H	L	H	H	L							H									
H	L	H	H	H								H								
H	H	L	L	L									H							
H	H	L	L	H										H						
H	H	L	H	L											H					
H	H	L	H	H												H				
H	H	H	L	L													H			
H	H	H	L	H														H		
H	H	H	H	L															H	
H	H	H	H	H																H
L	X	X	X	X	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Supply Voltage $\left(V_{S S}-V_{B B}\right)$	38 V
Input Current	10 mA
Output Current	-20 mA
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$	2168 mW
Molded Package	$260^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 4 sec.)	
*Derate molded package $17.35 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.	

Operating Conditions

Supply Voltage			
$V_{S S}$	5.0	9.5	V
$V_{B B}$	Gnd	-26	V
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions				Min	Typ	Max	Units
V_{IH}	Logical " 1 " Input Voltage	$\mathrm{V}_{\mathrm{SS}}=\mathrm{Max}$	Enable	$\mathrm{I}_{\mathrm{N}}=260 \mu \mathrm{~A}$				5.1	V
			A, B, C, D	$\mathrm{IN}=1400 \mu \mathrm{~A}$				1.5	V
IIH	Logical "1" Input Current	$\mathrm{V}_{\mathrm{SS}}=\mathrm{Max}$	Enable A, B, C, D					260	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	Logical "0" Input Voltage	$\mathrm{V}_{\mathrm{SS}}=\mathrm{Max}$	Enable					1.0	V
			A, B, C, D					0.3	V
IIL	Logical "0" Input Current	$\mathrm{V}_{\mathrm{SS}}=\mathrm{Max}$	Enable	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$				-1.0	$\mu \mathrm{A}$
			A, B, C, D	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILI(MAX }}$		25			$\mu \mathrm{A}$
V_{OH}	Logical " 1 " Output Voltage	Digit Output, $\mathrm{I}_{\mathrm{OH}}=-7 \mathrm{~mA}$				$\mathrm{V}_{S S}-2.5$			V
${ }^{\mathrm{I} \mathrm{OH}}$	Logical " 1 " Output Current	$\mathrm{V}_{\mathrm{SS}}=\mathrm{Max}, \text { Osc. Output, } \mathrm{V}_{\mathrm{RC}}=0.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=10 \mathrm{~V}$						50	$\mu \mathrm{A}$
los	Output Short-Circuit Current	$\mathrm{V}_{\mathrm{SS}}=\mathrm{Min}$, Pin $\mathrm{R}, \mathrm{V}_{\mathrm{RC}}=0.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V}$				-150		-450	$\mu \mathrm{A}$
ROUT	Output Pull-Down Resistor	$\mathrm{V}_{\text {SS }}=\mathrm{Min}$, Digit Output				30	50	85	k Ω
V_{OL}	Logical " 0 " Output Voltage	$\mathrm{V}_{\text {SS }}=\mathrm{Min}$	Osc	$\mathrm{V}_{\mathrm{RC}}=1.6 \mathrm{~V}$	$\mathrm{IOL}=6 \mathrm{~mA}$			0.5	V
			Pin R		$\mathrm{IOL}=60 \mu \mathrm{~A}$			0.2	V
		$\mathrm{V}_{\text {SS }}=\mathrm{Max}$	Digit Output	$\mathrm{V}_{\text {ENABLE }}=1 \mathrm{~V}$	$\mathrm{IOL}=10 \mu \mathrm{~A}$			$\mathrm{V}_{\mathrm{BB}}+1.4$	V
Iss	Supply Current	$\mathrm{V}_{\mathrm{SS}}=9.5 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=0$		$\mathrm{V}_{\text {ENABLE }}=5.1 \mathrm{~V}$			9.0	12.5	mA
				$\mathrm{V}_{\text {ENABLE }}=1 \mathrm{~V}$			5.0	9.0	mA
I_{BB}	Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}=9.5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \\ & \mathrm{~V}_{\mathrm{BB}}=-26 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=300 \mu \mathrm{~A} \\ & \text { (Note 4) } \end{aligned}$		$\mathrm{V}_{\text {ENABLE }}=1 \mathrm{~V}$			-0.8	-1.5	mA
				$\mathrm{V}_{\text {ENABLE }}=5.1$			-3.0	-5.0	mA
V_{B}	Filament Bias Voltage	$\mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}$				$\mathrm{V}_{\mathrm{BB}}+6.4$	$\mathrm{V}_{\mathrm{BB}}+6.9$	$\mathrm{V}_{\mathrm{BB}}+7.4$	V

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified, $\mathrm{min} / \mathrm{max}$ limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range. All typicals are given for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, and all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Approximately 50% of input current on pins $4,5,6,7$ is shunted to $V_{B B}$. If minimum $I_{B B}$ is desired, then $I_{\mathbb{N}}$ should be minimized by using resistors in series with the inputs.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {pdo }}$	Propagation Delay to a Logical "0" from Enable Input to Digit Output	$\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{BB}}=-23 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=8 \mathrm{~V}$			1	$\mu \mathrm{s}$
$\mathrm{t}_{\text {pdo }}$	Propagation Delay to a Logical "0" A, B, C, D to Digit Output				1	$\mu \mathrm{S}$
$\mathrm{t}_{\text {pd1 }}$	Propagation Delay to a Logical "1" from Enable Input to Digit Output				300	ns
$\mathrm{t}_{\text {pd1 }}$	Propagation Delay to a Logical "1" from A, B, C, D to Digit Output				500	ns
$\mathrm{t}_{\text {FALL }}$	Oscillator Output Transition Time from 1 to 0	$\mathrm{V}_{\mathrm{SS}}=9.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=6 \mathrm{k}$ to $\mathrm{V}_{\mathrm{SS}}, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$			50	ns
fosc	Oscillator Frequency	$\begin{aligned} & 7 \mathrm{~V}<\mathrm{V}_{\mathrm{SS}}<9.5 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=27 \mathrm{k} \Omega \pm 2 \%, \mathrm{R}_{\mathrm{L}}=1.3 \mathrm{k}, \\ & \mathrm{C}_{\mathrm{T}}=100 \mathrm{pF}, \pm 5 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	320	360	400	kHz
dc	Oscillator Duty Cycle		46	56	66	\%

AC Test Circuit

LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

