

DS26C31T/DS26C31M CMOS Quad TRI-STATE® Differential Line Driver

General Description

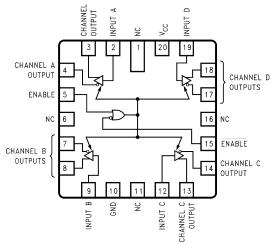
The DS26C31 is a quad differential line driver designed for digital data transmission over balanced lines. The DS26C31T meets all the requirements of EIA standard RS-422 while retaining the low power characteristics of CMOS. The DS26C31M is compatible with EIA standard RS-422; however, one exception in test methodology is taken (Note 8). This enables the construction of serial and terminal interfaces while maintaining minimal power consumption.

The DS26C31 accepts TTL or CMOS input levels and translates these to RS-422 output levels. This part uses special output circuitry that enables the drivers to power down without loading down the bus. This device has enable and disable circuitry common to all four drivers. The DS26C31 is pin compatible to the AM26LS31 and the DS26LS31.

All inputs are protected against damage due to electrostatic discharge by diodes to $\rm V_{\rm CC}$ and ground.

Features

- TTL input compatible
- Typical propagation delays: 6 ns
- Typical output skew: 0.5 ns
- Outputs will not load line when V_{CC} = 0V
- DS26C31T meets the requirements of EIA standard RS-422
- Operation from single 5V supply
- TRI-STATE outputs for connection to system buses
- Low quiescent current
- Available in surface mount
- Mil-Std-883C compliant


Connection Diagrams

Dual-In-Line Package INPUT A INPUT D **CHANNEL A** OUTPUTS CHANNEL D 13 OUTPUTS **ENABLE** 12 ENABLE CHANNEL B OUTPUTS CHANNEL C OUTPUTS INPUT B GND:

Top View

Order Number DS26C31TM or DS26C31TN
See NS Package Number M16A or N16E
For Complete Military Product Specifications,
refer to the appropriate SMD or MDS.
Order Number DS26C31ME/883, DS26C31MJ/883
or DS26C31MW/883
See NS Package Number E20A, J16A or W16A

20-Lead Ceramic Leadless Chip Carrier (E)

00857412

Truth Table

ENABLE	ENABLE	Input	Non-Inverting	Inverting	
			Output	Output	
L	Н	Х	Z	Z	
All other		L	L	Н	
combinations of		Н	Н	L	
enable inputs					

L = Low logic state

X = Irrelevant

H = High logic state

Z = TRI-STATE (high impedance)

TRI-STATE® is a registered trademark of National Semiconductor Corporation. FACT™ is a trademark of National Semiconductor Corporation.

Absolute Maximum Ratings (Notes 1,

2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

per pin (I_{CC}) ±150 mA

Storage Temperature Range (T_{STG}) -65° Max. Power Dissipation (P_D) @25°C (Note 3)

Ceramic "J" Pkg. 2419 mW Plastic "N" Pkg. 1736 mW

-65°C to +150°C

SOIC "M" Pkg. 1226 mW Ceramic "W" Pkg. 1182 mW Ceramic "E" Pkg. 2134 mW Lead Temperature (T_L) (Soldering, 4 sec.) 260°C

This device does not meet 2000V ESD Rating. (Note 13)

Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	4.50	5.50	V
DC Input or Output Voltage			
(V_{IN}, V_{OUT})	0	V_{CC}	V
Operating Temperature Range (T _A)			
DS26C31T	-40	+85	°C
DS26C31M	-55	+125	°C
Input Rise or Fall Times (t _r , t _f)		500	ns

DC Electrical Characteristics

 V_{CC} = 5V ± 10% (unless otherwise specified) (Note 4)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{IH}	High Level Input Voltage			2.0			V
V _{IL}	Low Level Input Voltage					0.8	V
V _{OH}	High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{I}$	L,	2.5	3.4		V
		$I_{OUT} = -20 \text{ mA}$	1				
V _{OL}	Low Level Output	$V_{IN} = V_{IH} \text{ or } V_{I}$	L,		0.3	0.5	V
	Voltage	$I_{OUT} = 20 \text{ mA}$					
V _T	Differential Output	$R_L = 100\Omega$		2.0	3.1		V
	Voltage	(Note 5)					
$ V_T - \overline{V_T} $	Difference In	$R_L = 100\Omega$				0.4	V
	Differential Output	(Note 5)					
V _{OS}	Common Mode	$R_L = 100\Omega$				3.0	V
	Output Voltage	(Note 5)	-				
IV _{OS} – V _{OS} I	Difference In	$R_L = 100\Omega$				0.4	V
	Common Mode Output	(Note 5)					
I _{IN}	Input Current	$V_{IN} = V_{CC}$, GND, V_{IH} , or V_{IL}				±1.0	μΑ
I _{cc}	Quiescent Supply	DS26C31T	$V_{IN} = V_{CC}$ or GND		200	500	μΑ
	Current (Note 6)	$I_{OUT} = 0 \mu A$	$V_{IN} = 2.4V \text{ or } 0.5V$		0.8	2.0	mA
			(Note 6)				
		DS26C31M	V _{IN} = V _{CC} or GND		200	500	μΑ
		$I_{OUT} = 0 \mu A$	$V_{IN} = 2.4V \text{ or } 0.5V$		0.8	2.1	mA
			(Note 6)				
l _{oz}	TRI-STATE Output	V _{OUT} = V _{CC} or GND					
	Leakage Current	ENABLE = V _{IL}			±0.5	±5.0	μΑ
		ENABLE = V _{IH}					
I _{sc}	Output Short	V _{IN} = V _{CC} or GND (Notes 5, 7)		-30		-150	mA
	Circuit Current						
I _{OFF}	Output Leakage Current	DS26C31T	V _{OUT} = 6V			100	μΑ
	Power Off (Note 5)	$V_{CC} = 0V$	$V_{OUT} = -0.25V$			-100	μΑ
		DS26C31M	V _{OUT} = 6V			100	μΑ
		$V_{CC} = 0V$	V _{OUT} = 0V			-100	μΑ
			(Note 8)				

DC Electrical Characteristics (Continued)

Note 1: Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: Unless otherwise specified, all voltages are referenced to ground. All currents into device pins are positive, all currents out of device pins are negative.

Note 3: Ratings apply to ambient temperature at 25°C. Above this temperature derate N package at 13.89 mW/°C, J package 16.13 mW/°C, M package 9.80 mW/°C, E package 12.20 mW/°C, and W package 6.75 mW/°C.

Note 4: Unless otherwise specified, min/max limits apply across the recommended operating temperature range. All typicals are given for V_{CC} = 5V and T_A = 25°C.

Note 5: See EIA Specification RS-422 for exact test conditions.

Note 6: Measured per input. All other inputs at V_{CC} or GND.

Note 7: This is the current sourced when a high output is shorted to ground. Only one output at a time should be shorted.

Note 8: The DS26C31M (-55° C to $+125^{\circ}$ C) is tested with V_{OUT} between +6V and 0V while RS-422A condition is +6V and -0.25V.

Switching Characteristics

 V_{CC} = 5V ±10%, $t_r \le 6$ ns, $t_f \le 6$ ns (Figures 1, 2, 3, 4) (Note 4)

Symbol	Parameter	Conditions	Min	Тур	M	Units	
					DS26C31T	CS26C31M	1
t _{PLH} , t _{PHL}	Propagation Delays	S1 Open	2	6	11	14	ns
	Input to Output						
Skew	(Note 9)	S1 Open		0.5	2.0	3.0	ns
t _{TLH} , t _{THL}	Differential Output Rise	S1 Open		6	10	14	ns
	And Fall Times						
t _{PZH}	Output Enable Time	S1 Closed		11	19	22	ns
t _{PZL}	Output Enable Time	S1 Closed		13	21	28	ns
t _{PHZ}	Output Disable Time	S1 Closed		5	9	12	ns
	(Note 10)						
t _{PLZ}	Output Disable Time	S1 Closed		7	11	14	ns
	(Note 10)						
C _{PD}	Power Dissipation			50			pF
	Capacitance (Note 11)						
C _{IN}	Input Capacitance			6			pF

Note 9: Skew is defined as the difference in propagation delays between complementary outputs at the 50% point.

Note 10: Output disable time is the delay from ENABLE or ENABLE being switched to the output transistors turning off. The actual disable times are less than indicated due to the delay added by the RC time constant of the load.

Note 11: C_{PD} determines the no load dynamic power consumption, P_D = C_{PD} V_{CC}2 f + I_{CC} V_{CC}, and the no load dynamic current consumption, I_S = C_{PD} V_{CC} f + I_{CC}.

Comparison Table of Switching Characteristics into "LS-Type" Load

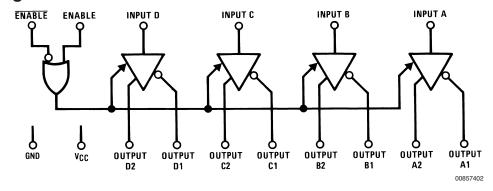
 $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $t_r \le 6$ ns, $t_f \le 6$ ns (Figures 2, 4, 5, 6) (Note 12)

Symbol	Parameter	Conditions	DS26C31T		DS26LS31C		Units	
			Тур	Max	Тур	Max		
t _{PLH} , t _{PHL}	Propagation Delays	C _L = 30 pF						
	Input to Output	S1 Closed	6	8	10	15	ns	
		S2 Closed						
Skew	(Note 9)	C _L = 30 pF						
		S1 Closed	0.5	1.0	2.0	6.0	ns	
		S2 Closed						
t _{THL} , t _{TLH}	Differential Output Rise	C _L = 30 pF						
	and Fall Times	S1 Closed	4	6			ns	
		S2 Closed						
t _{PLZ}	Output Disable Time	C _L = 10 pF						
	(Note 10)	S1 Closed	6	9	15	35	ns	
		S2 Open						

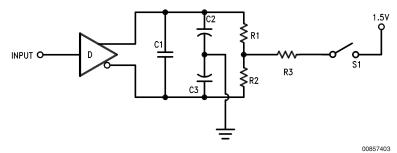
Comparison Table of Switching Characteristics into "LS-Type"

Load (Continued)

 $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $t_r \le 6$ ns, $t_f \le 6$ ns (Figures 2, 4, 5, 6) (Note 12)


Symbol	Parameter	Conditions	DS26C31T		DS26LS31C		Units
			Тур	Max	Тур	Max	
t _{PHZ}	Output Disable Time	C _L = 10 pF					
	(Note 10)	S1 Open	4	7	15	25	ns
		S2 Closed					
t _{PZL}	Output Enable Time	C _L = 30 pF					
		S1 Closed	14	20	20	30	ns
		S2 Open					
t _{PZH}	Output Enable Time	C _L = 30 pF					
		S1 Open	11	17	20	30	ns
		S2 Closed					

Note 12: This table is provided for comparison purposes only. The values in this table for the DS26C31 reflect the performance of the device but are not tested or guaranteed.


Note 13: ESD Rating:

HBM (1.5 kΩ, 100 pF) Inputs \geq 1500V Outputs \geq 1000V EIAJ (0Ω, 200 pF) \geq 350V

Logic Diagram

AC Test Circuit and Switching Time Waveforms

Note: C1 = C2 = C3 = 40 pF (Including Probe and Jig Capacitance), R1 = R2 = 50Ω , R3 = 500Ω .

FIGURE 1. AC Test Circuit

AC Test Circuit and Switching Time Waveforms (Continued)

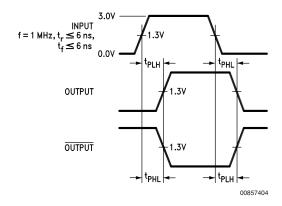


FIGURE 2. Propagation Delays

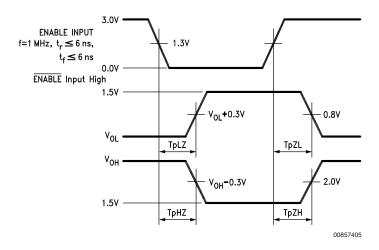
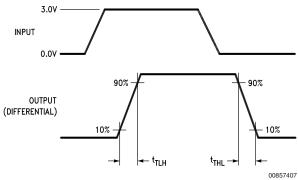



FIGURE 3. Enable and Disable Times

Input pulse; f = 1 MHz, 50%; $t_r \le 6$ ns, $t_f \le 6$ ns

FIGURE 4. Differential Rise and Fall Times

AC Test Circuit and Switching Time Waveforms (Continued)

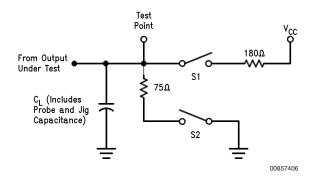


FIGURE 5. Load AC Test Circuit for "LS-Type" Load

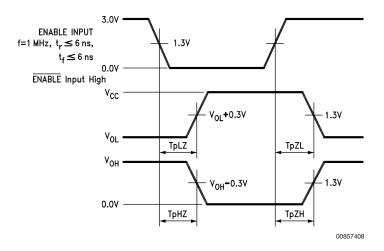
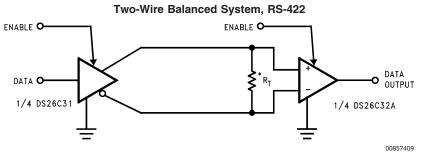
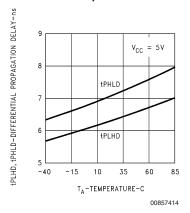
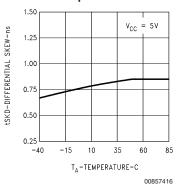
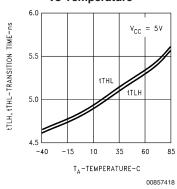



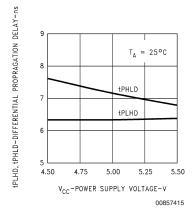
FIGURE 6. Enable and Disable Times for "LS-Type" Load

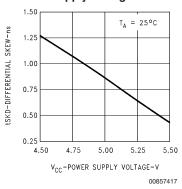

Typical Applications

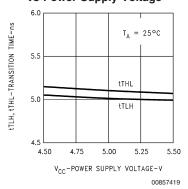

*R_T is optional although highly recommended to reduce reflection.

Typical Performance Characteristics

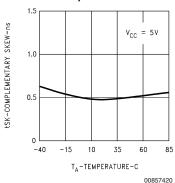

Differential Propagation Delay vs Temperature


Differential Skew vs Temperature

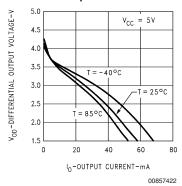

Differential Transition Time vs Temperature


Differential Propagation Delay vs Power Supply Voltage

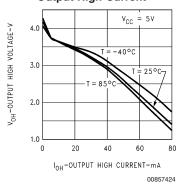
Differential Skew vs Power Supply Voltage

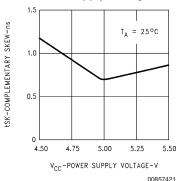


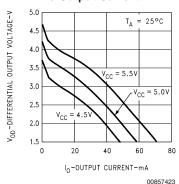
Differential Transition Time vs Power Supply Voltage

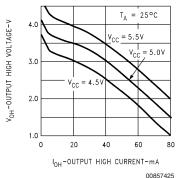


Typical Performance Characteristics (Continued)

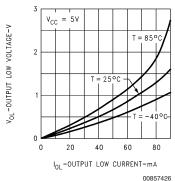

Complementary Skew vs Temperature


Differential Output Voltage vs Output Current

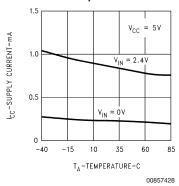

Output High Voltage vs Output High Current


Complementary Skew vs Power Supply Voltage

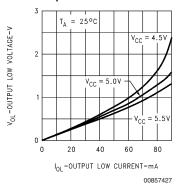
Differential Output Voltage vs Output Current

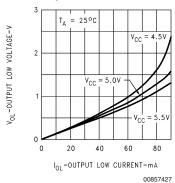


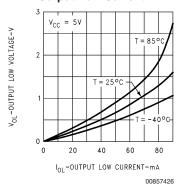
Output High Voltage vs Output High Current

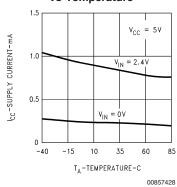


Typical Performance Characteristics (Continued)

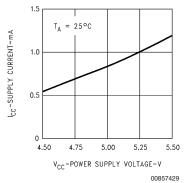

Output Low Voltage vs Output Low Current


Supply Current vs Temperature

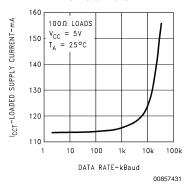

Output Low Voltage vs Output Low Current


Output Low Voltage vs Output Low Current

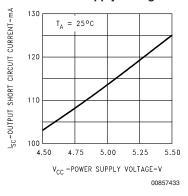
Output Low Voltage vs Output Low Current

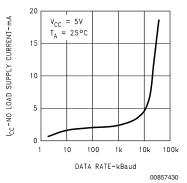


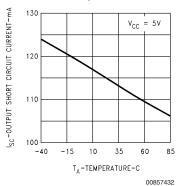
Supply Current vs Temperature



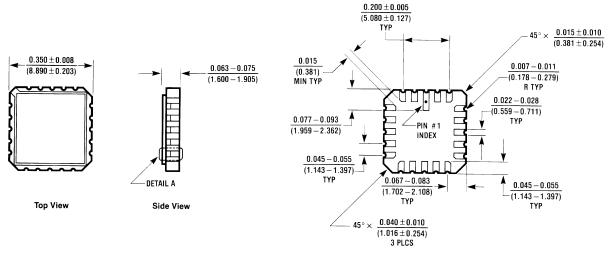
Typical Performance Characteristics (Continued)


Supply Current vs Power Supply Voltage

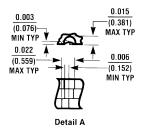

Loaded Supply Current vs Data Rate


Output Short Circuit Current vs Power Supply Voltage

No Load Supply Current vs Data Rate

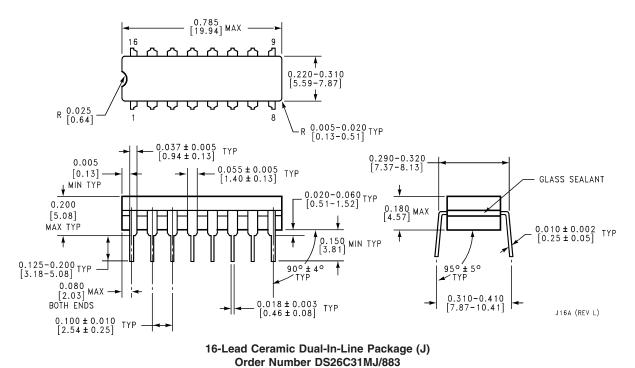


Output Short Circuit Current vs Temperature

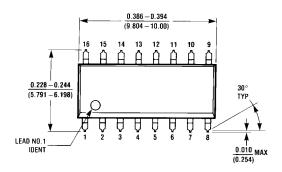


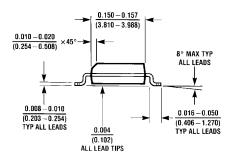
Physical Dimensions inches (millimeters)

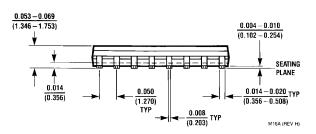
unless otherwise noted



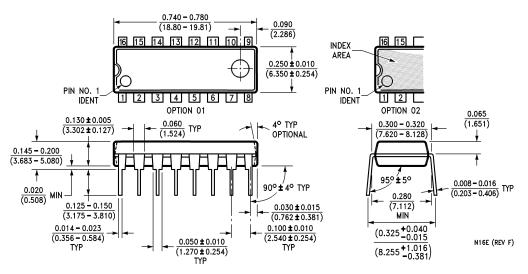
Bottom View

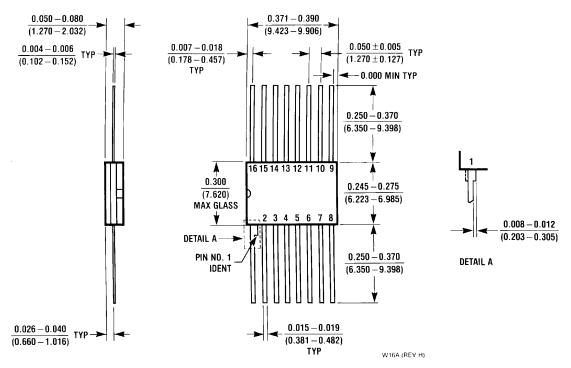

E20A (REV D)


20-Lead Ceramic Leadless Chip Carrier (E) Order Number DS26C31ME/883 NS Package Number E20A



NS Package Number J16A


Physical Dimensions inches (millimeters) unless otherwise noted (Continued)



Molded Package Small Outline (M) Order Number DS26C31TM NS Package Number M16A

16-Lead Molded Dual-In-Line Package (N) Order Number DS26C31TN NS Package Number N16E

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Ceramic Flatpak Package (W)
Order Number DS26C31MW/883
NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560 This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.