

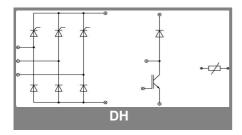
3-Phase Bridge Rectifier + IGBT braking chopper

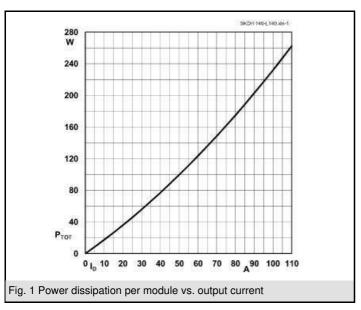
SKDH146/...-L140

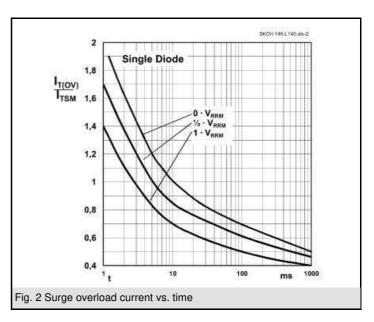
Data

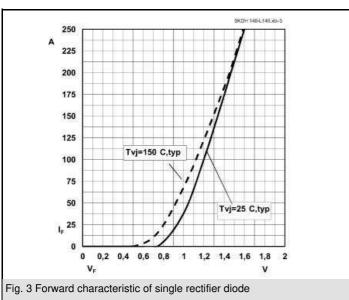
Features

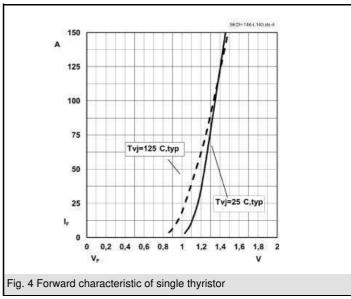
- · Compact design
- Two screws mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- High surge currents
- Up to 1600V reverse voltage
- IGBT Trench4 inside; max Tj=175°C
- CAL4F diode inside, max Tj=175°C
- I_{CM}/I_{FM} = 3xI_{C,nom}/I_{F,nom}
 Rectifier diode, max Tj=150°C

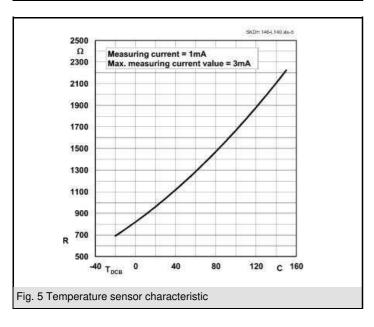

Typical Applications*

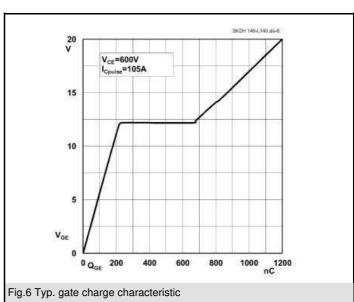

- DC drives
- Controlled filed rectifiers for DC motors
- · Controlled battery charger

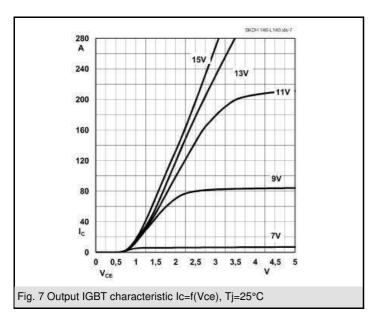

V _{RSM}	V_{RRM}, V_{DRM}	I _D = 140 A (maximum value for continuous operation)		
V	V	(T _s = 80 °C)		
1300	1200	SKDH146/12-L140		
1700	1600	SKDH146/16-L140		

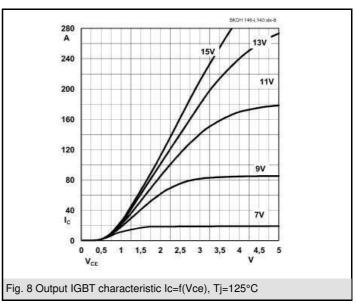

Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise s	T _s = 25 °C, unless otherwise specified			
Symbol	Conditions	Values	Units			
Bridge - Rectifier						
I _D	T _s = 80 °C; inductive load	140	Α			
I_{FSM}/I_{TSM}	$t_p = 10 \text{ ms}; \sin 180^\circ; T_{jmax}$	1250	Α			
i²t	$t_p = 10 \text{ ms}; \sin 180^\circ; T_{jmax}$	7800	A²s			
IGBT - Chopper						
V_{CES}/V_{GES}		1200 / 20	V			
I _C	T _s = 25 (70) °C	110 (80)	Α			
I _{CM}	$t_p = 1 \text{ ms}; T_s = ^{\circ}\text{C}$	315	Α			
Freewhee	eling - CAL Diode	•	•			
V_{RRM}		1200	V			
I_{F}	T _s = 25 (70) °C	90 (60)	Α			
I _{FM}	$t_p = 1 \text{ ms}; T_s = ^{\circ}\text{C}$	300	Α			
T_{v_i}	Diode & IGBT (Thyristor)	- 40 + 175 (-40+ 125)	°C			
T _{stg}		- 40 + 125	°C			
T _{solder}	terminals, 10 s	260	°C			
V _{isol}	a.c. (50) Hz, RMS 1 min. / 1 s	3000 / 3600	V			

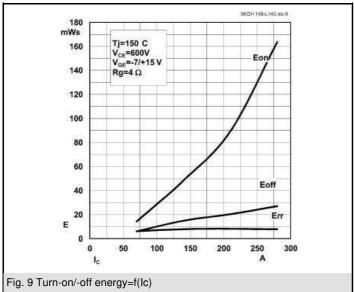

Characteristics		$T_s = 25 ^{\circ}C$,	T _s = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
Diode - F	Rectifier				·	
V_{TO} / r_{t}	T _j = 125 °C		0,8 / 4		V / mΩ	
$R_{th(j-s)}$	per diode			0,8	K/W	
IGBT - CI	hopper					
V _{CE(sat)}	I _C = 140 A, T _j = 25 °C; V _{GE} = 15 V		1,85	2,1	V	
$R_{th(j-s)}$	per IGBT		0,38		K/W	
t _{d(on)} / t _r	valid for all values:		97 / 185		ns	
$t_{d(off)} / t_f$	V_{CC} = 600 V; V_{GE} = 15 V; I_{C} = 140 A; T_{j} = 150 °C;		443 / 82		ns	
$E_{on}+E_{off}$	$T_{i} = 150 ^{\circ}\text{C}; R_{G} = 4 \Omega;$		63,3		mJ	
	inductive load					
CAL - Did	ode - Freewheeling				•	
$V_{T(TO)} / r_t$	T _j = 150 °C		0,9 / 7,8	1,1 / 8,6	V / mΩ	
$R_{th(j-s)}$	per diode		0,56		K/W	
I _{RRM}	valid for all values:		30		Α	
Q_{rr}	I _F = 140 A; V _R =600 V; dI _F /dt =1700 A/μs		9		μC	
E_{off}	$V_{GE} = 0 \text{ V}; T_j = 150 ^{\circ}\text{C}$		7,92		mJ	
Tempera	ture Sensor	•			•	
R _{TS}	T = 25 (100) °C;	1	000 (1670)		Ω	
Mechanic	cal data					
M_S	mounting Torque	2,55		3,45	Nm	

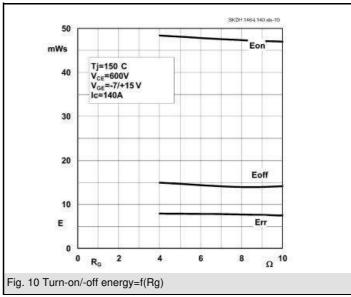


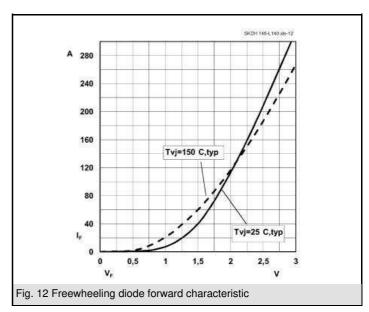


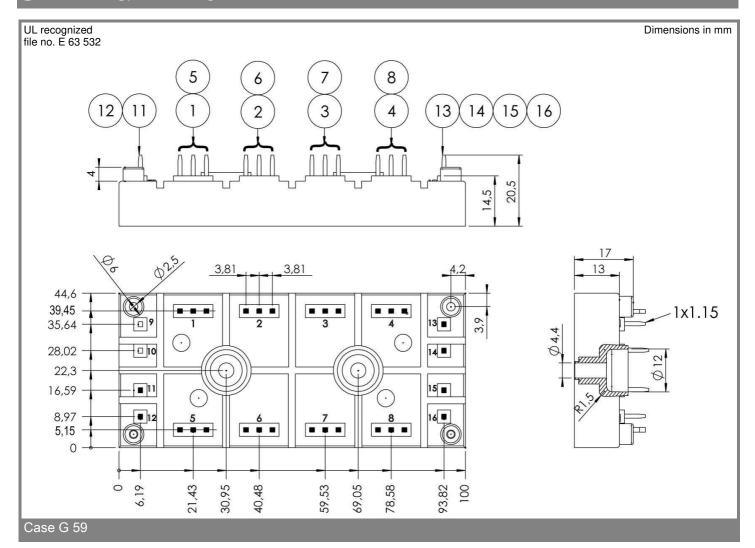


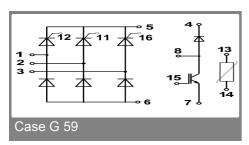












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.

4 29-07-2011 DIL © by SEMIKRON